extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C3×C12) = C4×C3≀C3 | φ: C3×C12/C12 → C3 ⊆ Aut C32 | 36 | 3 | C3^2.1(C3xC12) | 324,31 |
C32.2(C3×C12) = C4×He3.C3 | φ: C3×C12/C12 → C3 ⊆ Aut C32 | 108 | 3 | C3^2.2(C3xC12) | 324,32 |
C32.3(C3×C12) = C4×He3⋊C3 | φ: C3×C12/C12 → C3 ⊆ Aut C32 | 108 | 3 | C3^2.3(C3xC12) | 324,33 |
C32.4(C3×C12) = C4×C3.He3 | φ: C3×C12/C12 → C3 ⊆ Aut C32 | 108 | 3 | C3^2.4(C3xC12) | 324,34 |
C32.5(C3×C12) = C4×C9○He3 | φ: C3×C12/C12 → C3 ⊆ Aut C32 | 108 | 3 | C3^2.5(C3xC12) | 324,108 |
C32.6(C3×C12) = Dic3×C3×C9 | φ: C3×C12/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.6(C3xC12) | 324,91 |
C32.7(C3×C12) = Dic3×He3 | φ: C3×C12/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.7(C3xC12) | 324,93 |
C32.8(C3×C12) = Dic3×3- 1+2 | φ: C3×C12/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.8(C3xC12) | 324,95 |
C32.9(C3×C12) = C4×C32⋊C9 | central extension (φ=1) | 108 | | C3^2.9(C3xC12) | 324,27 |
C32.10(C3×C12) = C4×C9⋊C9 | central extension (φ=1) | 324 | | C3^2.10(C3xC12) | 324,28 |
C32.11(C3×C12) = C12×3- 1+2 | central extension (φ=1) | 108 | | C3^2.11(C3xC12) | 324,107 |