Extensions 1→N→G→Q→1 with N=C32 and Q=C3×C12

Direct product G=N×Q with N=C32 and Q=C3×C12
dρLabelID
C33×C12324C3^3xC12324,159

Semidirect products G=N:Q with N=C32 and Q=C3×C12
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×C12) = C3×C32⋊C12φ: C3×C12/C6C6 ⊆ Aut C32366C3^2:(C3xC12)324,92
C322(C3×C12) = C32×C32⋊C4φ: C3×C12/C32C4 ⊆ Aut C3236C3^2:2(C3xC12)324,161
C323(C3×C12) = C12×He3φ: C3×C12/C12C3 ⊆ Aut C32108C3^2:3(C3xC12)324,106
C324(C3×C12) = Dic3×C33φ: C3×C12/C3×C6C2 ⊆ Aut C32108C3^2:4(C3xC12)324,155
C325(C3×C12) = C32×C3⋊Dic3φ: C3×C12/C3×C6C2 ⊆ Aut C3236C3^2:5(C3xC12)324,156

Non-split extensions G=N.Q with N=C32 and Q=C3×C12
extensionφ:Q→Aut NdρLabelID
C32.1(C3×C12) = C4×C3≀C3φ: C3×C12/C12C3 ⊆ Aut C32363C3^2.1(C3xC12)324,31
C32.2(C3×C12) = C4×He3.C3φ: C3×C12/C12C3 ⊆ Aut C321083C3^2.2(C3xC12)324,32
C32.3(C3×C12) = C4×He3⋊C3φ: C3×C12/C12C3 ⊆ Aut C321083C3^2.3(C3xC12)324,33
C32.4(C3×C12) = C4×C3.He3φ: C3×C12/C12C3 ⊆ Aut C321083C3^2.4(C3xC12)324,34
C32.5(C3×C12) = C4×C9○He3φ: C3×C12/C12C3 ⊆ Aut C321083C3^2.5(C3xC12)324,108
C32.6(C3×C12) = Dic3×C3×C9φ: C3×C12/C3×C6C2 ⊆ Aut C32108C3^2.6(C3xC12)324,91
C32.7(C3×C12) = Dic3×He3φ: C3×C12/C3×C6C2 ⊆ Aut C32366C3^2.7(C3xC12)324,93
C32.8(C3×C12) = Dic3×3- 1+2φ: C3×C12/C3×C6C2 ⊆ Aut C32366C3^2.8(C3xC12)324,95
C32.9(C3×C12) = C4×C32⋊C9central extension (φ=1)108C3^2.9(C3xC12)324,27
C32.10(C3×C12) = C4×C9⋊C9central extension (φ=1)324C3^2.10(C3xC12)324,28
C32.11(C3×C12) = C12×3- 1+2central extension (φ=1)108C3^2.11(C3xC12)324,107

׿
×
𝔽